随着人们对供水质量和供水可靠性的不断调高,同时考虑到选择节能要求,利用自动化技术实现恒压供水的系统应运而生。
一、首先谈一谈为什么要恒压供水呢?恒压供水是指供水管内水压力恒定不变的供水,只有供水系统中供水流量等于用水流量时,供水管中压力不变;当供水流量大于用水流量时,水管的压力会增加;当供水流量小于用水流量时,水管的压力会降低。所以说供水与用水流量之间的矛盾具体反应在压力的变化上。二、恒压供水的优点有哪些呢?1、恒压供水减低了“水锤”效应,提高了管网使用寿命。所谓“水锤”效应是指工频供电的水泵在起动和停车时,突然加压和减压使水流冲击管道,产生“咣咣咣”的撞击声音,减低了水管的使用寿命,像锤子敲击水管一样,所以说“水锤”效应是一种特别形象的说法。如果采用恒压供水,通过变频器对水泵的启动时间和停车时间进行延长控制,从而降低动态转矩,从在很大程度减少了“水锤”效应。采用恒压供水可以节约能源,实现节能运行。比如对于一个小区的供水,在晚上12点之后,居民基本休息了,用水量很少,如果多台大容量水泵还是同时运行为了保证水压的话,非常浪费能源。此时,通过启用休眠泵保证水管的水压,等到早晨6点左右,居民起床了,用水量增加了,此时让多台大容量的水泵同时启动,从而实现了全流量用水。
三、恒压供水的变频控制有哪几种?
恒压供水的变频控制有两种,分别为多台常规泵同步变频调速和变频泵-工频泵并联运行。多台常规泵同步变频调速是指多台水泵同时采用变频控制工作,如果用水量较低时多台水泵工作在低频状态,这种控制方式造成一次性投入较高,运行不经济,这种恒压供水的变频控制一般很少采用。现在普遍采用变频泵-工频泵并联切换运行的控制方式,使用变频泵-工频泵并联运行控制方式时,电动机的电源不仅来自变频器输出也可以来自工频电源,如下图所示。下图为恒压供水系统图,在这个恒压系统是由三台水泵、一台变频器、一台PLC和一个压力传感器及若干辅助元件构成。系统中压力传感器是用来检测供水管中压力,变频器是恒压供水系统中核心元件,可以通过改变电动机的频率从而实现电动机的软起动、无极调速和无波动稳压效果等功能。每台电动机有两个电源,即工频电源和变频器输出的电源。
四、恒压供水系统的工作原理是什么?
以上图为例,介绍一下恒压供水系统的工作原理。接通电源,供水系统投入运行,让系统工作在自动状态,PLC控制变频器启动。PLC通过压力设定值与压力实际值的偏差进行PID调节,并输出频率给定信号给变频器。变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速,从而保证水压保持在压力设定值的上、下限范围之内,实现恒压控制。增泵工作过程:假定增泵顺序为1、2、3泵。开始时,1泵电动机在PLC控制下先投入调速运行,其运行速度由变频器调节。当供水压力小于压力预置值时变频器输出频率升高,水泵转速上升,从而供水量增加,供水压力增加。当变频器的输出频率达到上限,并稳定运行后,如果供水压力仍没达到预置值,则需进入增泵过程。在PLC的逻辑控制下将1泵电动机与变频器连接断开,1泵电动机切换到工频运行。与此同时,变频器与2泵电动机连接,控制2泵投入变频调速运行。如果还没到达设定值,则继续按照以上步骤将2泵切换到工频运行,控制3泵投入变频调速运行。减泵工作过程:假定减泵顺序依次为3、2、1泵,当供水压力大于预置值时,变频器输出频率减低,供水量减少,当变频器的输出频率达到下限,并稳定运行段时间后,变频器控制的3水泵停机。如果供水压力仍大于预置值,则将下一台2水泵由工频运行切接到交频调速运行,并继续进行减泵工作。
五、恒压供水变频器控制原理
1、调速原理
交流电机转速特性:n=60f(1-s)/p,其中n 为电机转速,f为交流电频率,s 为转差率,p为极对数。
电机选定之后s 、p则为定值,电机转速n和交流电频率f 成正比,使用变频器来改变交流电频率,即可实现对电机变频无级调速。
2、根据离心泵的负载工作原理可知:
流量与转速成正比:Q∝N
转矩与转速的平方成正比:T∝N2
功率与转速的三次方成正比:P∝N3
而且变频调速自身的能量损耗极低,在各种转速下变频器输入功率几乎等于电机轴功率,由此可知在使用变频调速技术供水时,系统中流量变化与功率的关系:
P变=N3P额=Q3P额
采用出口阀控制流量的方式,电机在工频运行时,系统中流量变化与功率的关系:P阀=(0.4 0.6Q)P额
其中,P为功率
N为转速
Q为流量
例如设定当前流量为水泵额定流量的60%,则采用变频调速时P变=Q3P额=0.216P额,而采用阀门控制时P阀=(0.4 0.6Q)P额=0.76P额,节电=(P阀-P变)/P阀*100%=71.6%。
由此可见从理论计算结果可以看到节能效果非常显著,而且在实际运行中小区变频恒压供水技术比传统的加压供水系统还有自动控制恒压、无污染等明显优势。
流量% 100% 90% 80% 70% 60% 50%
节电率% 0% 22.5% 41.8% 61.5% 71.6% 82.1%
而且新型的小区变频恒压供水系统能自动地控制一至多台主泵和一台休眠泵的运行。在管网用水量减少到单台主泵流量的约1/6-1/8时,系统自动停止主泵,启动小功率的休眠泵工作,保证系统小流量供水,解决小流量甚至零流量供水时大量电能的浪费问题,从运行控制上进一步节能。
根据反馈原理:要想维持一个物理量不变或基本不变,就应该引这个物理量与恒值比较,形成闭环系统。我们要想保持水压的恒定,因此就必须引入水压反馈值与给定值比较,从而形成闭环系统。但被控制的系统特点是非线性、大惯性的系统,在控制和PID相结合的方法,在压力波动较大时使用模糊控制,以加快响应速度;在压力范围较小时采用PID来保持静态精度。这通过PLC加智能仪表可时现该算法,同时对PLC的编程来时现泵的工频与变频之间的切换。实践证明,使用这种方法是可行的,而且造价也不高。
要想维持供水网的压力不变,根据反馈定理在管网系统的管理上安装了压力变送器作为反馈元件,由于供水系统管道长、管径大,管网的充压都较慢,故系统是一个大滞后系统,不易直接采用PID调节器进行控制,而采用PLC参与控制的方式来实现对控制系统调节作用。
六、恒压供水变频器特点
1、节电:变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。优化的节能控制软件,使水泵实现最大限度地节能运行。
2、卫生节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象;系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的'二次污染',取消了水池定期清理的工作。
3、运行可靠:变频恒压供水系统实现了系统供水压力稳定而流量可在大范围内连续变化,从而可以保证用户任何时候的用水压力,不会出现在用水高峰期热水器不能正常使用的情况由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。
4、控制灵活:分段供水,定时供水,手动选择工作方式。
5、自我保护功能完善:新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护等。