双向可控硅原理
“双向可控硅”:是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。
先看下图的工作原理:
如果想简单一点只要记住一句话即可,只要在G端有信号,那么T1-T2这条路就是通的,只有G在零点的时候才不会导通,主要来看一下应用吧。
来看一个电路图,其实双向可控硅多数用在交流电路中。
简单介绍一下,Q5是三极管,U2是个光耦,BT1就是双向可控硅,R144是一个压敏电阻,正常工作时候相当于断路,超过470V才起作用,CN5接负载,也就是说我只要给AirPumpSwitch一个信号,可控硅就是导通的了,不管是在交流电正负部分。
双向可控硅特点及应用
双向可控硅可被认为是一对反并联连接的普通可控硅的集成,工作原理与普通单向可控硅相同。双向可控硅有两个主电极T1和T2,一个门极G,门极使器件在主电极的正反两个方向均可触发导通,所以双向可控硅在第1和第3象限有对称的伏安特性。双向可控硅门极加正、负触发脉冲都能使管子触发导通,因此有四种触发方式。双向可控硅应用为正常使用双向可控硅,需定量掌握其主要参数,对双向可控硅进行适当选用并采取相应措施以达到各参数的要求。
·耐压级别的选择:通常把VDRM(断态重复峰值电压)和VRRM(反向重复峰值电压)中较小的值标作该器件的额定电压。选用时,额定电压应为正常工作峰值电压的2~3倍,作为允许的操作过电压裕量。
·电流的确定:由于双向可控硅通常用在交流电路中,因此不用平均值而用有效值来表示它的额定电流值。由于可控硅的过载能力比一般电磁器件小,因而一般家电中选用可控硅的电流值为实际工作电流值的2~3倍。同时,可控硅承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时的峰值电流应小于器件规定的IDRM和IRRM。
·通态(峰值)电压VTM的选择:它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅。
·维持电流:IH是维持可控硅保持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。
·电压上升率的抵制:dv/dt指的是在关断状态下电压的上升斜率,这是防止误触发的一个关键参数。此值超限将可能导致可控硅出现误导通的现象。由于可控硅的制造工艺决定了A2与G之间会存在寄生电容。
双向可控硅好坏判断
方法一:
测量极间电阻法。将万用表置于皮Rx1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于Rx10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零,而T1-G之间的正反向电阻很小或接近于零时,就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。
方法二:
检查触发导通能力。万用表置于Rx10档:①如图,1(a)所示, 用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示, 改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。
方法三:
检查触发导通能力。如图2所示,取一只10uF左右的电解电容器,将万用表置于Rx10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于Rx10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触一下后离开,观察表头指针偏转情况,如果测试结果与“方法二’相同,就证明双向可控硅是好的。
应用此法判断双向可控硅的触发导通能力更为可靠。由于电解电容器上充的电压较高,使触发信号增大,更利于判断大功率双向可控硅的触发能力。