一、有刷马达的原理
要讲清这一问题,那就应粗略地了解一下有刷马达的工作原理。接下来用一个三电极、二磁极内转子有刷马达作为演示。
二、无刷电机工作原理
首先,无刷电机不是直流电机,模型虽然是直流电池供电,但通过无刷电调之后就转变为了三相交变电流传输到了三个极性上。通过下图可以看出,无刷电机是没有碳刷的,和有刷相反,无刷电机的磁铁成了转子~
三、无刷电机的命名
相对有刷电机,无刷电机的命名好理解很多,一般它由四个数字组成,例如2040无刷电机。这个数字仅代表电机的外形尺寸,2040表示直径为20mm,长度为40mm的电机。同理3650无刷电机表示此电机直径36mm,长度50mm。
其实370有刷电机的大小和2530无刷电机一样,540电机的大小和3650无刷电机一样。
四、无刷电机的特点
1、没有碳刷,理论上转子无需和外界有导体上的链接。
2、在运行过程中,无刷电机的转速是靠交流电的频率决定的,所以频率越高无刷电机可以转得越快。
3、无刷电机的转速是严格按照KV值设定的,1000KV表示每一福特电机转速加快1000转。所以电压为5V时,1000kv的无刷电机转速5000rpm。
4、在运行过程中,同样转速电机的扭力是靠电调输出的电流强度决定的,电流越大扭力越大。(理想状态下,我们“聪明”的无刷电调会不断“监测”我们的电机是否需要更大的扭力,同时也会保证扭力不过剩,以免浪费表情)
五、外转子与内转子无刷电机
上面无刷电机工作原理图所示的是内转子无刷电机,顾名思义,磁铁在里边。而外转子无刷电机则相反,它的磁铁“包”在外面,而A、B、C电极在里边,这样的设计可以让电机的扭力更大,但转速却上不来。在模型中,一般外转子无刷电机的KV值在2000以内,而内转子无刷电机则可以到8000-9000kv。因为这个原因,一般飞机上常见外转子无刷电机,而模型车和模型船一般都使用内转子无刷电机。
六、有感无刷和无感无刷
要说明这个问题首先要弄懂感是感的啥~,有感无刷中的感是指“霍尔传感器”,那么什么是“霍尔”呢?霍尔是指的霍尔效应,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。
那么我们为什么要感应这玩意?要说清这个问题就必须从无感无刷的一个缺点说起。刚才说了无刷电机的转速是靠交流电频率决定的,那么电调要想方设法弄明白目前电机的转速以及当前电机的状态。其实这对已经正常运转的电机来说很容易,但对于一个刚刚起步或者运行速度很慢的电机来说就显得比较麻烦了(很难较准确的测出电机转速的状态),所以无感无刷电机会在低速时线性不好甚至可能会颤抖,而起步的扭力也难以强过同等级有刷电机。
但是人们发现无论什么运行状态的无刷电机,它的霍尔效应都是明显的,所以通过霍尔效应电调可以很容易的知道无论高速还是低速电机的运行状态,从而解决了无感无刷电机的毛病!但就目前来看霍尔传感器并不是廉价货,所以有感无刷电机、电调的价格会比无感无刷贵上许多。
七、常见模型用有刷、无感无刷、有感无刷电机对比
有刷电机 无感无刷 有感无刷
转换效率: 低 高 高
电机输出功率: 低 高 高
起步扭力: 好 一般 好
中高速扭力: 一般 好 好
低速线性: 较好 一般 好
中高速线性: 好 好 好
最高速度(一般540电机): 常见2万 常见5万 常见5万
易磨损程度: 容易磨损 不易磨损 不易磨损
电机价格(540级) 中档100RMB 最低120RMB 最低200RMB
电调价格(540级) 中档平均120左右 最低200RMB 最低300RMB
无刷电机的工作原理详细解读
分享一篇关于无刷电机的工作原理一些知识,确保只要有高一物理知识的朋友就能够看得懂,希望有兴趣的朋友耐心往下看,相互学习! 首先给大家复习几个基础定则:左手定则、右手定则、右手螺旋定则。别懵逼,我下面会给大家解释。 左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。 右手定则,这是产生感生电动势的基础,跟左手定则的相反,磁场中的导体因受到力的牵引切割磁感线产生电动势。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。不信可以试试。
三相线分开,电机可以轻松转动
三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
这个定则是通电线圈判断极性的基础,红色箭头方向即为电流方向。 看完了三大定则,我们接下来先看看电机转动的基本原理。 第一部分:直流电机模型 我们找到一个中学物理学过的直流电机的模型,通过磁回路分析法来进行一个简单的分析。
状态1 当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩是力与力臂的乘积。其中一个为零,乘积就为零了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,
状态2 如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相。补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。 第二部分:三相二极内转子电机 一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。
上图显示了定子绕组的联结方式(转子未画出假想是个二极磁铁),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB注意这是有顺序的。 下面我看第一阶段:AB相通电
当AB相通电,则A极线圈产生的磁感线方向如红色箭头所示,B极产生的磁感线方向如图蓝色箭头所示,那么产生的合力方向即为绿色箭头所示,那么假设其中有一个二极磁铁,则根据“中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致”则N极方向会与绿色箭头所示方向重合。至于C,暂时没他什么事。 第二阶段:AC相通电
第三阶段:BC相通电
第三阶段:BA相通电
为了节省篇幅,我们就不一一描述CACB的模型,大家可以自己类推一下。以下为中间磁铁(转子)的状态图:
每个过程转子旋转60度
六个过程即完成了完整的转动,其中6次换相 第三部分:三相多绕组多极内转子电机 我们再来看一个复杂点的,图(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图 (b)。从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸对齐。
其运动的原则是:转子的N极与通电绕组的S极有对齐的运动趋势,而转子的S极与通电绕组的N极有对齐的运动趋势。 即为S与N相互吸引,注意跟之前的分析方法有一定的区别。 好吧,还是再帮大家分析一下吧, 第一阶段:AB相通电
第二阶段:AC相通电
第三阶段:BC相通电
第四阶段:BA通电
第五阶段:CA通电
第六阶段:CB通电
以上为六个不同的通电状态,其中经历了五个转动过程。每个过程为20度。
第四部分:外转子无刷直流电机 看完了内转子无刷直流电机的结构,我们来看外转子的。其区别就在于,外转子电机将原来处于中心位置的磁钢做成一片片,贴到了外壳上,电机运行时,是整个外壳在转,而中间的线圈定子不动。外转子无刷直流电机较内转子来说,转子的转动惯量要大很多(因为转子的主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV值在几百到几千之间。也是航模主要运用的无刷电机 顺便啰嗦一下吧。无刷电机KV值定义为:转速/V,意思为输入电压每增加1伏特,无刷电机空转转速增加的转速值。比如说,标称值为1000KV的外转子无刷电机,在11伏的电压条件下,最大空载转速即为:11000rpm(rpm的含义是:转/分钟)。 同系列同外形尺寸的无刷电机,根据绕线匝数的多少,会表现出不同的KV特性。绕线匝数多的,KV值低,最高输出电流小,扭力大;绕线匝数少的,KV值高,最高输出电流大,扭力小。我先前测试过穿越机2204电机的极限电流,单电机能彪上25A,而2212系列电机15A都上不了。 外转子无刷直流电机的结构
分析方法也和内转子电机类似,大家可以自己分析一下,根据右手螺旋定理判断线圈的N/S极,转子永磁体的N极与定子绕组的S极有对齐(吸引)的趋势,转子永磁体的S极与定子绕组的N极有对齐(吸引)的趋势,从而驱动电机转动。 经典无刷电机2212 1000kv电机结构分析。
图为DJI 2312S电机和XXD 2212电机的(解剖图) 其结构如下:定子绕组固定在底座上,转轴和外壳固定在一起形成转子,插入定子中间的轴承。
图为xxd2212线圈拆解图
图为12绕组14极(即7对极),电机绕组绕发图 后面画出了6种两相通电的情形,可以看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB->AC->BC->BA->CA->CB的顺序进行通电换相。当然,如果你想让电机反转的话,电子方法是按倒过来的次序通电;物理方法直接对调任意两根线,假设A和B对调,那么顺序就是BA->BC->AC->AB->CB->CA,大家有没有发现这里顺序就完全倒过来了。
AB相通电
AC相通电
BC相通电
BA相通电
CA相通电
CB相通电
要说明一下的是,由于每根引出线同时接入两个绕组,所以电流是分两路走的。这里为使问题尽量简单化,下面几个图中只画出了主要一路的电流方向,还有一路电流未画出,另一路电流的具体情况放在后面进行分析,涉及到电路检测换相位置。