例如:一张A4(210mm×297mm) 幅面的照片,若用中等分辨率(300dpi)的扫描仪按真彩色扫描,其数据量为多少?共有210*297/25.4/25.4*300=29002个象素,每个像素是24位,其数据量为29002*24=696Kb。
(补充说明dpi代表每平方英寸的点数,1英寸=1000mil=25.4mm)
例如,一幅具有中等分辨率(640*480像素)真彩色图像(24位/像素),它的数据量约为每帧640*480*24=7.37Mb。若要达到每秒25帧的全动态显示要求,每秒所需的数据量为184Mb,而且要求系统的数据传输速率必须达到184Mb/s,这在目前是无法达到的。
再例如:对声音,用16位/样值的PCM编码,采样速率选为44.1kHz,则双声道立体声声音每秒将有44.1*16*2=176KB的数据量,而1分钟的数据量则为176KB*60=10.56MB,而一首歌通常在3-5分钟,可想而知如果不进行数据压缩存储量和交换量都相当惊人。
总之,大数据量的图象信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力。单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩。
压缩的理论基础是信息论。从信息论的角度来看,压缩就是去掉信息中的冗余,即保留不确定的信息,去掉确定的信息(可推知的),也就是用一种更接近信息本质的描述来代替原有冗余的描述。这个本质的东西就是信息量(即不确定因素)。
压缩可分为两大类:第一类压缩过程是可逆的,也就是说,从压缩后的图象能够完全恢复出原来的图象,信息没有任何丢失,称为无损压缩;第二类压缩过程是不可逆的,无法完全恢复出原图象,信息有一定的丢失,称为有损压缩。选择哪一类压缩,要折衷考虑,尽管我们希望能够无损压缩,但是通常有损压缩的压缩比(即原图象占的字节数与压缩后图象占的字节数之比,压缩比越大,说明压缩效率越高)比无损压缩的高。
图象压缩一般通过改变图象的表示方式来达到,因此压缩和编码是分不开的。图象压缩的主要应用是图象信息的传输和存储,可广泛地应用于广播电视、电视会议、计算机通讯、传真、多媒体系统、医学图象、卫星图象等领域。
压缩编码的方法有很多,主要分成以下四大类:(1)象素编码;(2)预测编码;(3)变换编码;(4)其它方法。
所谓象素编码是指,编码时对每个象素单独处理,不考虑象素之间的相关性。在象素编码中常用的几种方法有:(1)脉冲编码调制(Pulse Code Modulation,简称PCM);(2)熵编码(Entropy Coding);(3)行程编码(Run Length Coding);(4)位平面编码(Bit Plane Coding)。其中我们要介绍的是熵编码中的哈夫曼(Huffman)编码和行程编码(以读取.PCX文件为例)。
所谓预测编码是指,去除相邻象素之间的相关性和冗余性,只对新的信息进行编码。举个简单的例子,因为象素的灰度是连续的,所以在一片区域中,相邻象素之间灰度值的差别可能很小。如果我们只记录第一个象素的灰度,其它象素的灰度都用它与前一个象素灰度之差来表示,就能起到压缩的目的。如248,2,1,0,1,3,实际上这6个象素的灰度是248,250,251,251,252,255。表示250需要8个比特,而表示2只需要两个比特,这样就实现了压缩。
常用的预测编码有Δ调制(Delta Modulation,简称DM);微分预测编码(Differential Pulse Code Modulation,DPCM),具体的细节在此就不详述了。
所谓变换编码是指,将给定的图象变换到另一个数据域(如频域)上,使得大量的信息能用较少的数据来表示,从而达到压缩的目的。变换编码有很多,如(1)离散傅立叶变换(Discrete Fourier Transform,简称DFT);(2)离散余弦变换(Discrete Cosine Transform,简称DCT);(3)离散哈达玛变换(Discrete Hadamard Transform,简称DHT)。
其它的编码方法也有很多,如混合编码(Hybird Coding)、矢量量化(Vector Quantize,VQ) 、LZW算法。在这里,我们只介绍LZW算法的大体思想。