电子开发网

电子开发网电子设计 | 电子开发网Rss 2.0 会员中心 会员注册
搜索: 您现在的位置: 电子开发网 >> 基础入门 >> 电路原理 >> 正文

电磁炉各部分电路原理,电磁炉工作原理与故障分析讲座

作者:佚名    文章来源:网络整理    点击数:    更新时间:2024/3/19

电磁炉工作原理与故障分析讲座(1)

版本2

一、简介

1.1 电磁加热原理

电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将 50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为 20-40KHz 的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿 ( 导磁又导电材料 ) 底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

1.2   47 系列筒介

47 系列是由正夫人旗下中山电子技术开发制造厂设计开发的全新一代电磁炉 ,面板 有 LED 发光二极管显示模式、 LED 数码显示模式、 LCD 液晶显示模式、 VFD 莹光显示模式、 TFT 真彩显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开 / 关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有 500W~3400W 的不同机种 , 功率调节范围为额定功率的 90%, 并且在全电压范围内功率自动恒定。 200~240V 机种电压使用范围为 160~260V, 100~120V 机种电压使用范围为 90~135V 。全系列机种均适用于 50 、 60Hz 的电压频率。使用环境温度为 -23 ℃ ~45 ℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开 / 短路保护、 2 小时不按键 ( 忘钾机 ) 保护、 IGBT 温度限制、 IGBT 温度过高保护、低温环境工作模式、 IGBT 测温传感器开 / 短路保护、高低电压保护、浪涌电压保护、 VCE 抑制、 VCE 过高保护、过零检测、小物检测、锅具材质检测。

47 系列须然机种较多 , 且功能复杂 , 但不同的机种其主控电路原理一样 , 区别只是零件参数的差异及 CPU 程序不同而己。电路的各项测控主要由一块 8 位 4K 内存的单片机组成 , 外围线路简单且零件极少 , 并设有故障报警功能 , 故电路可靠性高 , 维修容易 , 维修时根据故障报警指示 , 对应检修相关单元电路 , 大部分均可轻易解决。

二、电磁炉工作原理分析

2.1 特殊零件简介

2.1.1 LM339 集成电路

LM339 内置四个翻转电压为 6mV 的电压比较器 , 当电压比较器输入端电压正向时 (+ 输入端电压高于 - 入输端电压 ), 置于 LM339 内部控制输出端的三极管截止 , 此时输出端相当于开路 ; 当电压比较器输入端电压反向时 (- 输入端电压高于 + 输入端电压 ), 置于 LM339 内部控制输出端的三极管导通 , 将比较器外部接入输出端的电压拉低 , 此时输出端为 0V

2.1.2   IGBT

绝缘双栅极晶体管 (Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。 目前有用不同材料及工艺制作的 IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。 IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。 从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。 IGBT的特点: 1.电流密度大, 是MOSFET的数十倍。 2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。 4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。 5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。 IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。

目前 458 系列因应不同机种采了不同规格的 IGBT, 它们的参数如下 :

(1) SGW25N120---- 西门子公司出品 , 耐压 1200V, 电流容量 25 ℃ 时 46A,100 ℃ 时 25A, 内部不带阻尼二极管 , 所以应用时须配套 6A/1200V 以上的快速恢复二极管 (D11) 使用 , 该 IGBT 配套 10A/1200/1500V 以上的快速恢复二极管 (D11) 后可代用 SKW25N120 。

(2) SKW25N120---- 西门子公司出品 , 耐压 1200V, 电流容量 25 ℃ 时 46A,100 ℃ 时 25A, 内部带阻尼二极管 , 该 IGBT 可代用 SGW25N120, 代用时将原配套 SGW25N120 的 D11 快速恢复二极管拆除不装。

(3) GT40Q321---- 东芝公司出品 , 耐压 1200V, 电流容量 25 ℃ 时 42A,100 ℃ 时 23A, 内部带阻尼二极管 , 该 IGBT 可代用 SGW25N120 、 SKW25N120, 代用 SGW25N120 时请将原配套该 IGBT 的 D11 快速恢复二极管拆除不装。

(4) GT40T101---- 东芝公司出品 , 耐压 1500V, 电流容量 25 ℃ 时 80A,100 ℃ 时 40A, 内部不带阻尼二极管 , 所以应用时须配套 15A/1500V 以上的快速恢复二极管 (D11) 使用 , 该 IGBT 配套 6A/1200V 以上的快速恢复二极管 (D11) 后可代用 SGW25N120 、 SKW25N120 、 GT40Q321, 配套 15A/1500V 以上的快速恢复二极管 (D11) 后可代用 GT40T301 。

(5) GT40T301---- 东芝公司出品 , 耐压 1500V, 电流容量 25 ℃ 时 80A,100 ℃ 时 40A, 内部带阻尼二极管 , 该 IGBT 可代用 SGW25N120 、 SKW25N120 、 GT40Q321 、 GT40T101, 代用 SGW25N120 和 GT40T101 时请将原配套该 IGBT 的 D11 快速恢复二极管拆除不装。

(6) GT60M303 ---- 东芝公司出品 , 耐压 900V, 电流容量 25 ℃ 时 120A,100 ℃ 时 60A, 内部带阻尼二极管。

(7) GT40Q323---- 东芝公司出品 , 耐压 1200V, 电流容量 25 ℃ 时 40A,100 ℃ 时 20A, 内部带阻尼二极管 , 该 IGBT 可代用 SGW25N120 、 SKW25N120, 代用 SGW25N120 时请将原配套该 IGBT 的 D11 快速恢复二极管拆除不装。

(8) FGA25N120---- 美国仙童公司出品 , 耐压 1200V, 电流容量 25 ℃ 时 42A,100 ℃ 时 23A, 内部带阻尼二极管 , 该 IGBT 可代用 SGW25N120 、 SKW25N120, 代用 SGW25N120 时请将原配套该 IGBT 的 D11 快速恢复二极管拆除不装。

2.2 电路方框图

2.3 主回路原理分析

时间 t1~t2 时当开关脉冲加至 IGBTQ1 的 G 极时 , IGBTQ1 饱和导通 , 电流 i1 从电源流过 L1, 由于线圈感抗不允许电流突变 . 所以在 t1~t2 时间 i1 随线性上升 , 在 t2 时脉冲结束 , IGBTQ1 截止 , 同样由于感抗作用 ,i1 不能立即突变 0, 于是向 C3 充电 , 产生充电电流 i2, 在 t3 时间 ,C3 电荷充满 , 电流变 0, 这时 L1 的磁场能量全部转为 C3 的电场能量 , 在电容两端出现左负右正 , 幅度达到峰值电压 , 在 IGBTQ1 的 CE 极间出现的电压实际为逆程脉冲峰压 + 电源电压 , 在 t3~t4 时间 ,C3 通过 L1 放电完毕 ,i3 达到最大值 , 电容两端电压消失 , 这时电容中的电能又全部转化为 L1 中的磁能 , 因感抗作用 ,i3 不能立即突变 0, 于是 L1 两端电动势反向 , 即 L1 两端电位左正右负 , 由于 IGBT 内部阻尼管的存在 ,C3 不能继续反向充电 , 而是经过 C2 、 IGBT 阻尼管回流 , 形成电流 i4, 在 t4 时间 , 第二个脉冲开始到来 , 但这时 IGBTQ1 的 UE 为正 ,UC 为负 , 处于反偏状态 , 所以 IGBTQ1

不能导通 , 待 i4 减小到 0,L1 中的磁能放完 , 即到 t5 时 IGBTQ1 才开始第二次导通 , 产生 i5 以后又重复 i1~i4 过程 , 因此在 L1 上就产生了和开关脉冲 f(20KHz~30KHz) 相同的交流电流。 t4~t5 的 i4 是 IGBT 内部阻尼管的导通

电流 , 在高频电流一个电流周期里 ,t2~t3 的 i2 是线盘磁能对电容 C3 的充电电流 ,t3~t4 的 i3 是逆程脉冲峰压通过 L1 放电的电流 ,t4~t5 的 i4 是 L1 两端电动势反向时 , 因的存在令 C3 不能继续反向充电 , 而经过 C2 、 IGBT 阻尼管回流所形成的阻尼电流 ,IGBTQ1 的导通电流实际上是 i1 。

IGBTQ1 的 VCE 电压变化 : 在静态时 ,UC 为输入电源经过整流后的直流电源 ,t1~t2,IGBTQ1 饱和导通 ,UC 接近地电位 ,t4~t5, IGBT 阻尼管导通 ,UC 为负压 ( 电压为阻尼二极管的顺向压降 ),t2~t4, 也就是 LC 自由振荡的半个周期 ,UC 上出现峰值电压 , 在 t3 时 UC 达到最大值。

以上分析证实两个问题 : 一是在高频电流的一个周期里 , 只有 i1 是电源供给 L 的能量 , 所以 i1 的大小就决定加热功率的大小 , 同时脉冲宽度越大 ,t1~t2 的时间就越长 ,i1 就越大 , 反之亦然 , 所以要调节加热功率 , 只需要调节脉冲的宽度 ; 二是 LC 自由振荡的半周期时间是出现峰值电压的时间 , 亦是 IGBTQ1 的截止时间 , 也是开关脉冲没有到达的时间 , 这个时间关系是不能错位的 , 如峰值脉冲还没有消失 , 而开关脉冲己提前到来 , 就会出现很大的导通电流使 IGBTQ1 烧坏 , 因此必须使开关脉冲的前沿与峰值脉冲后沿相同步。

2.4 振荡电路

(1) 当 PWM 点有 Vi 输入时、 V7 OFF 时 (V7=0V), V5 等于 D6 的顺向压降 , 而当 V5<V6 之后 ,V7 由 OFF 转态为 ON,V6 亦上升至 Vi, 而 V5 则由 R20 向 C16 充电。

(2) 当 V5>V6 时 ,V7 转态为 OFF,V6 亦降至 D6 的顺向压降 , 而 V5 则由 C16 、 D6 放电。

(3) V5 放电至小于 V6 时 , 又重复 (1) 形成振荡。

“ G 点输入的电压越高 , V7 处于 ON 的时间越长 , 电磁炉的加热功率越大 , 反之越小”。

2.5 IGBT 激励电路

振荡电路输出幅度约 4.1V 的脉冲信号 , 此电压不能直接控制 IGBT 的饱和导通及截止 , 所以必须通过激励电路将信号放大才行 , 该电路工作过程如下 :

(1) V8 OFF 时 (V8=0V),V8<V9,V10 为高 ,Q1 导通、 Q4 截止 ,IGBT 的 G 极为 0V,IGBT 截止。

(2) V8 ON 时 (V8=4.1V),V8>V9,V10 为低 ,Q81 截止、 Q4 导通 ,+18V 通过 R23 、 Q4 和 Q1 的 E 极加至 IGBT 的 G 极 ,IGBT 导通。

2.6 PWM 脉宽调控电路

CPU 输出 PWM 脉冲到由 R30 、 C27 、 R31 组成的积分电路 , PWM 脉冲宽度越宽 ,C28 的电压越高 ,C29 的电压也跟着升高 , 送到振荡电路 (G 点 ) 的控制电压随着 C29 的升高而升高 , 而 G 点输入的电压越高 , V7 处于 ON 的时间越长 , 电磁炉的加热功率越大 , 反之越小。

“ CPU 通过控制 PWM 脉冲的宽与窄 , 控制送至振荡电路 G 的加热功率控制电压,控制了 IGBT 导通时间的长短 , 结果控制了加热功率的大小”。

2.7 同步电路

市电经整流器整流、滤波后的 310V 直流电,由 R15+R14 、 R16 分压产生 V3,R1+R17 、 R28 分压产生 V4, 在高频电流的一个周期里 , 在 t2~t4 时间 ( 图 1), 由于 C14 两端电压为上负下正 , 所以 V3<V4,V5OFF(V5=0V) 振荡电路 V6>V5,V7 OFF(V7=0V), 振荡没有输出 , 也就没有开关脉冲加至 Q1 的 G 极 , 保证了 Q1 在 t2~t4 时间 不会导通 , 在 t4~t6 时间 ,C3 电容两端电压消失 , V3>V4, V5 上升 , 振荡有输出 , 有开关脉冲加至 Q1 的 G 极。以上动作过程 , 保证了加到 Q1 G 极上的开关脉冲前沿与 Q1 上产生的 VCE 脉冲后沿相同步。

2.8 加热开关控制

(1) 当不加热时 ,CPU 17 脚输出低电平 ( 同时 CPU 10 脚也停止 PWM 输出 ), D7 导通 , 将 LM339 9 电压拉低 , 振荡停止 , 使 IGBT 激励电路停止输出 ,IGBT 截止 , 则加热停止。

开始加热时 , CPU 17 脚输出高电平 ,D7 截止 , 同时 CPU 10 脚开始间隔输出 PWM 试探信号 , 同时 CPU 通过分析电流检测电路和 VAC 检测电路反馈的电压信息、 VCE 检测电路反馈的电压波形变化情况 , 判断是否己放入适合的锅具 , 如果判断己放入适合的锅具 ,CPU10 脚转为输出正常的 PWM 信号 , 电磁炉进入正常加热状态 , 如果电流检测电路、 VAC 及 VCE 电路反馈的信息 , 不符合条件 ,CPU 会判定为所放入的锅具不符

(2) 或无锅 , 则继续输出 PWM 试探信号 , 同时发出指示无锅的报知信息 ( 见故障代码表 ), 如 30 秒钟内仍不符合条件 , 则关机。

2.9 VAC 检测电路

AC220V 由 D17 、 D18 整流的脉动直流电压通过 R40 限流再经过, C33 、 R39 C32 组成的π型滤波器进行滤波后的电压,经 R38 分压后的直流电压,送入 CPU 6 , 根据监测该电压的变化 ,CPU 会自动作出各种动作指令。

(1) 判别输入的电源电压是否在充许范围内 , 否则停止加热 , 并报知信息 ( 见故障代码表 ) 。

(2) 配合电流检测电路、 VCE 电路反馈的信息 , 判别是否己放入适合的锅具 , 作出相应的动作指令 ( 见加热开关控制及试探过程一节 ) 。

(3) 配合电流检测电路反馈的信息及方波电路监测的电源频率信息 , 调控 PWM 的脉宽 , 令输出功率保持稳定。

“电源输入标准 220V ± 1V 电压 , 不接线盘 (L1) 测试 CPU 第 6 脚电压 , 标准为 2.65V ± 0.06V ”。

2.10 电流检测电路

电流互感器 CT1 二次测得的 AC 电压 , 经 D1~D4 组成的桥式整流电路整流、 R12 、 R13 分压, C11 滤波 , 所获得的直流电压送至 CPU 5 脚 , 该电压越高 , 表示电源输入的电流越大 , CPU 根据监测该电压的变化 , 自动作出各种动作指令 :

(1) 配合 VAC 检测电路、 VCE 电路反馈的信息 , 判别是否己放入适合的锅具 , 作出相应的动作指令 ( 见加热开关控制及试探过程一节 ) 。

(2) 配合 VAC 检测电路反馈的信息及方波电路监测的电源频率信息 , 调控 PWM 的脉宽 , 令输出功率保持稳定。

2.11 VCE 检测电路

将 IGBT(Q1) 集电极上的脉冲电压通过 R1+R17 、 R28 分压 R29 限流后,送至 LM339 6 脚 , 在 6 脚上获得其取样电压 , 此反影了 IGBT 的 VCE 电压变化的信息送入 LM339, LM339 根据监测该电压的变化 , 自动作出电压比较而决定是否工作。

(1) 配合 VAC 检测电路、电流检测电路反馈的信息 , 判别是否己放入适合的锅具 , 作出相应的动作指令 ( 见加热开关控制及试探过程一节 ) 。

(2) 根据 VCE 取样电压值 , 自动调整 PWM 脉宽 , 抑制 VCE 脉冲幅度不高于 1050V( 此值适用于耐压 1200V 的 IGBT, 耐压 1500V 的 IGBT 抑制值为 1300V) 。

(3) 当测得其它原因导至 VCE 脉冲高于 1150V 时 (( 此值适用于耐压 1200V 的 IGBT, 耐压 1500V 的 IGBT 此值为 1400V), LM339 立即停止工作 ( 见故障代码表 ) 。

2.12 浪涌电压监测电路

当正弦波电源电压处于上下半周时 , 由 D17 、 D18 和整流桥 DB 内部交流两输入端对地的两个二极管组成的桥式整流电路产生的脉动直流电压,当电源突然有浪涌电压输入时 , 此电压通过 R41 、 C34 耦合 , 再经过 R42 分压, R44 限流 C35 滤波后的电压,控制 Q5 的基极,基极为 高电平时 , 电压 Q5 基极 ,Q5 饱和导通 ,CPU 17 的电平通过 Q5 至地 ,PWM 停止输出,本机停止工作 ; 当 浪涌脉冲过后 , Q5 的基极为 低电平 ,Q5 截止 , CPU 17 的电平通过 Q5 至地 , CPU 再重新发出加热指令。

2.13 过零检测

当正弦波电源电压处于上下半周时 , 由 D17 、 D18 和整流桥 DB 内部交流两输入端对地的两个二极管组成的桥式整流电路产生的脉动直流电压通过 R40 限流再经过, C33 、 R39 C32 组成的π型滤波器进行滤波后的电压,经 R38 分压后的电压,在 CPU 6 则形成了与电源过零点相同步的方波信号 ,CPU 通过监测该信号的变化 , 作出相应的动作指令。

2.14 锅底温度监测电路

 

加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的负温度系数热敏电阻 , 该电阻阻值的变化间接反影了加热锅具的温度变化 ( 温度 / 阻值祥见热敏电阻温度分度表 ), 热敏电阻与 R4 分压点的电压变化其实反影了热敏电阻阻值的变化 , 即加热锅具的温度变化 , CPU 8 脚通过监测该电压的变化 , 作出相应的动作指令 :

(1) 定温功能时 , 控制加热指令 , 另被加热物体温度恒定在指定范围内。

(2) 当锅具温度高于 270 ℃ 时 , 加热立即停止 , 并报知信息 ( 见故障代码表 ) 。

(3) 当锅具空烧时 , 加热立即停止 , 并报知信息 ( 见故障代码表 ) 。

(4) 当热敏电阻开路或短路时 , 发出不启动指令 , 并报知相关的信息 ( 见故障代码表 ) 。

2.15 IGBT 温度监测电路

IGBT 产生的温度透过散热片传至紧贴其上的负温度系数热敏电阻 TH, 该电阻阻值的变化间接反影了 IGBT 的温度变化 ( 温度 / 阻值祥见热敏电阻温度分度表 ), 热敏电阻与 R8 分压点的电压变化其实反影了热敏电阻阻值的变化 , 即 IGBT 的温度变化 , CPU 通过监测该电压的变化 , 作出相应的动作指令 :

(1) IGBT 结温高于 90 ℃ 时 , 调整 PWM 的输出 , 令 IGBT 结温 ≤ 90 ℃ 。

当 IGBT 结温由于某原因 ( 例如散热系统故障 ) 而高于 95

(2) ℃ 时 , 加热立即停止 , 并报知信息 ( 祥见故障代码表 ) 。

(3) 当热敏电阻 TH 开路或短路时 , 发出不启动指令 , 并报知相关的信息 ( 祥见故障代码表 ) 。

(4) 关机时如 IGBT 温度 >50 ℃ ,CPU 发出风扇继续运转指令 , 直至温度 < 50 ℃ ( 继续运转超过 30 秒钟如 温度仍 >50 ℃ , 风扇停转 ; 风扇延时运转期间 , 按 1 次关机键 , 可关闭风扇 ) 。

(5) 电磁炉刚启动时 , 当测得环境温度 <0 ℃ ,CPU 调用低温监测模式加热 1 分钟 ,30 秒钟后再转用正常监测模式 , 防止电路零件因低温偏离标准值造成电路参数改变而损坏 电磁炉。

2.16 散热系统

将 IGBT 及整流器 BG 紧贴于散热片上 , 利用风扇运转通过电磁炉进、出风口形成的气流将散热片上的热及线盘 L1 等零件工作时产生的热、加热锅具辐射进电磁炉内的热排出电磁炉外。

CPU 15 脚发出风扇运转指令时 , 15 脚输出高电平 , 电压通过 R27 送至 Q3 基极 ,Q3 饱和导通 ,VCC 电流流过风扇、 Q3 至地 , 风扇运转 ; CPU 发出风扇停转指令时 , 15 脚输出低电平 ,Q3 截止 , 风扇因没有电流流过而停转。

2.17 主电源

AC220V 50/60Hz 电源经保险丝 FUSE, 再通过由 RZ 、 C1 、共模线圈 L1 组成的滤波电路 ( 针对 EMC 传导问题而设置 , 祥见注解 ), 再通过电流互感器至桥式整流器 BG, 产生的脉动直流电压通过扼流线圈提供给主 回路使用 ;AC1 、 AC2 两端电压除送至辅助电源使用外 , 另外还通过印于 PCB 板上的保险线 P.F. 送至 D1 、 D2 整流得到脉动直流电压作检测用途。

注解 : 由于中国大陆目前并未提出电磁炉须作强制性电磁兼容 (EMC) 认证 , 基于成本原因 , 内销产品大部分没有将 CY1 、 CY2 装上 ,L1 用跳线取代 , 但基本上不影响电磁炉使用性能。

2.18 辅助电源

AC220V 50/60Hz 电压接入变压器初级线圈 , 次级两绕组分别产生 2.2V 、 12V 和 18V 交流电压。

12V 交流电压由 D19~D22 组成的桥式整流电路整流、 C37 滤波 , 在 C37 上获得的直流电压 VCC 除供给散热风扇使用外 , 还经由 V8 三端稳压 IC 稳压、 C38 滤波 , 产生 +5V 电压供控制电路使用。

18V 交流电压由 D15 组成的半波动整流电路整流、 C26 滤波后 , 再通过由 Q9 、 R33 、 DW9 、 C27 、 C28 组成的串联型稳压滤波电路 , 产生 +18V 电压供 IC2 和 IGBT 激励电路使用。

2.19 报警电路

 

电磁炉发出报知响声时 ,CPU1 脚输出幅度为 5V 、频率 4KHz 的脉冲信号电压至蜂鸣器 BZ1, 令 BZ1 发出报知响声。

 

 

 

目录

第一章 电磁炉的基本工作原理的介绍……………………..3

第二章 电磁炉组装结构图…………………………………..5

第三章 电磁炉的基本加热功能及保护功能介绍…………..7

第四章 电磁炉的原理图各功能部分的分析 ……………….9

第五章 电磁炉常见异常故障分析之“葵花宝典”………….32

第六章 电磁炉元器件的认别及其测量方式……………….43

第七章 电磁炉上元器件的规格与作用简介……………….48

电磁炉由于具有热效率高、使用方便、无烟熏、无煤气污染、安全卫生等优点,非常适合现代家庭使用

第一章 电磁炉的基本工作原理的介绍

电磁炉的加热原理

电磁炉又称电磁灶,分为工频(低频)和高频两种。其中,工频电磁炉工作简单可靠,但躁声大,热效率低,这里所说的电磁炉指高频电磁炉。

 

图1

电磁炉是利用电磁感应原理将电能转换为热能的工作原理。由整流电路将50/60Hz的交流电压转换成直流电压(AC-DC-AC、交流-直流-交流),再经过控制电路将直流电压转换成频率为20~35KHz的高频电压,高速变化的电流流过线圈产生高速变化的磁场,当磁场内的磁力线通过金属器皿底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西,达到用户使用的结果。 如图1

 

 

图2

如图2。电磁感应加热的基本过程,至少需要整流单元、功率开关管、功率开关管驱动控制单元、加热线圈单元及锅具等部件。电磁炉是运用高频电磁感应原理加热。它将市电整流滤波后得到的脉动直流转换为高频电流,通过加热线圈建立高频磁场,磁力线经线圈与金属器皿底部构成的磁回路穿透炉面作用于锅底,利用小电阻大电流的短路热效应产生热量,在锅底形成涡流而发热,起到加热器皿中的食物的作用。

一般来讲,器皿一般是用钢质、铁质材料来加热,铝、铜由于表面电阻率太小,而不易被加热,陶瓷、木等又由于表面电阻率太大,使产生电流太小,所以也不易被加热。

第二章 电磁炉组装结构图

 

电磁炉整机零件一般包括如下:

1、陶瓷板: 又叫微晶玻璃板,位于电磁炉顶部,用于锅具的垫放,具有足够机械强度,耐酸碱腐蚀,耐高低温冲击。

2、上  盖: 用耐温塑料制成,作为电器的外保护壳。

3、面  膜: 用塑料薄膜制成,用于功能显示及按键操作指示。

4、灯  板: 又叫显示控制板,位于壳内,进行功能显示及功能按键操作。

5、炉面传感器组件:位于壳内,嵌在发热盘的中间,用橡胶头或其它方式顶住陶瓷板,用于控制炉面锅具的温度。

6、加热线盘:位于壳内,主工作器件,发射磁力线,自身也会发热。

7、主 控 板:又叫电源板、主板,位于壳内,作为电转换的控制的主工作部分。

8、电源线及线卡:连接市电与电磁炉,提供电源通道。

9、电 风 扇:位于壳内,通过吸风将炉内热量带出壳外,起降温作用。

10、下  盖: 用耐温塑料制成,作为电器的下保护壳,及支撑内部器件及锅具作用。

第三章 电磁炉的基本控制功能及保护功能介绍

电磁炉分显示部分和主板控制部分

1、一般功能说明

1)、显示介面有LED发光二极管显示模式、数码管、LCD液晶、VFD荧光屏显示模式几种。

2)、操作方式有轻触按键、薄膜按键、触摸按键、编码器、电位器等模式。

3)、操作功能有加热火力调节、自动恒温设定、定时开机、预约开/关机、电量电压查询、自动功能和半自动功能(蒸煮、煮粥、煲汤、煮饭)、手动功能(煎、炸、抄、烤、火锅)等料理功能。

4)、使用电压范围分两个不同电压段,220VAC~240VAC机种在100VAC~280VAC或100VAC~120VAC机种在85VAC~144VAC之间可连续工作,适用于50/60Hz的电压频率。使用环境温度在-20℃~45℃。

注明: 

a)、功率输出:输出范围120W~2200W之间

b)、温度控制: 即定温控制。

c)、定时控制: 可进行时间设置关机或开机。

d)、大小物检测:小于一定面积的金属将不被加热。Φ60~Φ100、Φ80~Φ120

2、保护功能

具有锅具超温保护、锅具干烧保、炉面传感器开短路保护、炉面失效保护,IGBT测温传感器开短路保护,IGBT温度限制控制和超温保护、高低压保护、2小时无按键保护、浪涌电压/电流保护、高低温环境工作模式,VCE过压保护、过零检测、大小物检测,锅具材质检测。

注明:

  a)无锅报警,无锅或锅具材质不对,小物件:停止加热。若在1分钟内检测到有锅,则自动退出报警状态,并恢复原来工作状态。

  b)高/低压保护,当市电电网电压波动超出工作范围时,应能停止功率输出并报警,例如超出100~280V时出“低'E1’”或“高'E2’”;

  c)炉面传感器开路时,开机1分钟后检测,停止功率输出及报警,显示“E3”;

  d)炉面传感器短路时,停止功率输出及报警,显示“E4”;

  e)IGBT传感器开路时,开机1分钟后检测,停止功率输出及报警,显示“E5”;

  f)IGBT传感器短路时,停止功率输出及报警,显示“E6”;

  g)主传感器失效,停止功率输出及报警,显示“E7”;

  h)干扰保护,当电网上产生瞬间高压或浪涌电流时,电路停止功率输出,暂停工作2S,当干扰去除后能回复功能输出。

  i)过温保护/干烧保护,由于电磁炉为加热电器,内部很多器件在工作时会发出热量,当温度过高时因能报警并停止功率输出,电源指示灯闪烁,待温度下降后恢复加热

  j)IGBT温度过热,当高电压低功率自动提高功率以减小IGBT温升,如果出现异常温升,则温度达到95℃~110℃则停止加热保护,待温度低于65℃左右恢复加热。

以艾美特电磁炉为例

故障代码

故障原因

报警条件

E1

低压保护

电网电压低于100±5V

E2

高压保护

电网电压高于285±5V

E3

炉面传感器开路

延迟1分钟才检测传感器是否开路

E4

炉面传感器短路

马上停止加热

E5

IGBT传感器开路

延迟1分钟才检测传感器是否开路

E6

IGBT传感器短路

马上停止加热

E7

炉面传感器失效

根据每档档位判断传感器值变化

3、电路控制上,除有上述功能的电路外,还应有如下动作电路:

  a) 交流转直流,通过整流桥堆进行转换;

  b) 电源转换,将强电转换成弱电,提供18V,5V。

  c) 过零电路(同步电路),当IGBT的反压降到最低时才打开IGBT;

 d) IGBT驱动电路

 e) 谐振电路,

  f) 功率控制电路,将PWM进行积分处理,进行不同档下的功率控制;

  g) 检锅电路;

  h) 反压保护电路,将IGBT工作反压控制在合理范围内;  

  i) 高压保护电路

  J) 功率校准电路,通过可调电阻进行

  k) 蜂鸣器驱动电路,风扇驱动电路,热敏电阻取样电路

  l) 主芯片电路

  m) 显示及按键控制电路

 

第四章 电磁炉的原理图各功能部分的分析

电磁炉主板原理方框图

 

主板分成10大部分:

1、主回路的主谐振电路分析

2、IGBT驱动电路分析:(推挽式电路,高电平驱动有效)

3、电流取样电路

4、干扰保护电路

5、电压AD取样电路

6、同步电路和压控/自激电路

7、反压保护与PWM控制电路

8、炉面传感器与IGBT热敏电阻取样电路

9、风扇控制电路

10、开关电源电路

一、主回路的主谐振电路分析

 

由电力电子电路组成的电磁炉(Inductioncooker)是一种利用电磁感应加热原理,对锅体进行涡流加热的新型灶具。主电路是一个AC/DC/AC变换器,由桥式整流器和电压谐振变换器构成,当电磁炉负载(锅具)的大小和材质发生变化时,负载的等效电感会发生变化,将造成电磁炉主电路谐振频率变化,导致电磁炉的输出功率不稳定,就会使功率管IGBT过压损坏。在此先分析电磁炉主谐振电路拓扑结构和工作过程是怎样的。

1)电磁炉主电路拓扑结构

电磁炉的主电路如图1所示,市电经桥式整流器变换为直流电,再经电压谐振变换器变换成频率为20~35kHz的交流电。电压谐振变换器是低开关损耗的零电压型(ZVS)变换器,功率开关管的开关动作由单片机控制,并通过驱动电路完成。

 

电磁炉的加热线圈盘与负载锅具可以看作是一个空心变压器,次级负载具有等效的电感和电阻,将次级的负载电阻和电感折合到初级,可以得到图2所示的等效电路。其中R*是次级电阻反射到初级的等效负载电阻;L*是次级电感反射到初级并与初级电感L相叠加后的等效电感。                    

 

2)电磁炉主电路的工作过程

电磁炉主电路的工作过程可以分成3个阶段,各阶段的等效电路如图3所示。分析一个工作周期的情况,定义主开关开通的时刻为t0。时序波形如图4所示。

 

2.1 [t0,t1]主开关导通阶段 

按主开关零电压开通的特点,t0时刻,主开关上的电压uce=0,则Cr上的电压uc=uce-Udc=-Udc。如图3(a)所示,主开关开通后,电源电压Udc加在R*及L*支路和Cr两端。由于Cr上的电压已经是-Udc,故Cr中的电流为0。电流仅从R*及L*支路流过。流过IGBT的电流is与流过L*的电流iL相等。由图3(a)得式(1)。

 

可见,iL按照指数规律单调增加。流过R*形成了功率输出,流过L*而储存了能量。到达t1时刻,IGBT关断,iL达到最大值Im。这时,仍有uc=-Udc,uce=0。iL换向开始流入Cr,但Cr两端的电压不能突变,因此,IGBT为零电压关断。

2.2 [t1,t2]谐振阶段

IGBT关断之后,L*和Cr相互交换能量而发生谐振,同时在R*上消耗能量,形成功率输出。等效电路如图3(b)及图3(c)所示,我们也将其分为两个阶段来讨论。波形如图4中的iL和uc。

 

由图3(b)、图3(c)的等效电路可得到式(3)方程组。

L*(di/dt)+iLR*+uc=0

Cr(duc/dt)=iL   (3)

由初始条件iL(t1)=Im,uc(t1)=-Udc,

解微分方程组式(3)并代入初始条件,可得下列结果:

 

IGBT上的电压

 

式中:δ=R*/2L*为衰减系数;

 

φ是由电路的初始状态和电路参数决定的初相角,β是仅由电路参数决定的iL滞后于uc的相位角。

由上面的结果可以看到,当IGBT关断之后,uc和iL呈现衰减的正弦振荡,uce是Udc与uc的叠加,它呈现以Udc为轴心的衰减正弦振荡,其第一个正峰值是加在IGBT上的最高电压。首先是L*释放能量,Cr吸收能量,iL正向流动,部分能量消耗在R*上。在t1a时刻,ω(t-t1a)=+β,iL=0,L*的能量释放完毕,uc达到最大值Ucm,于是,IGBT上的电压也达到最大值uce=Ucm+Udc。这时Cr开始放电,L*吸收能量,当ω(t-t1)=φ时,uc=0,Cr的能量释放完毕,L*又开始释放能量,一部分消耗在R*上,一部分向Cr充电,使uc反向上升,如图4所示。

然后,Cr开始释放能量,使iL反向流动,一部分消耗在R*上,一部分转变成磁场能。在uc接近0之前,ω(t-t1)=φ+2β之时,iL达到负的最大值。当ω(t-t1)=π+φ时,uc=0,Cr的能量释放完毕,转由L*释放能量,使iL继续反向流动,一部分消耗在R*上,一部分向Cr反向充电。由于Cr左端的电位被电源箝位于Udc,故右端电位不断下降。当ω(t-t1)=ω(t2-t1),即t=t2时,uc=-Udc,uce=0,二极管D开始导通,使Cr左端电位不能再下降而箝位于0。于是,uc不再变化,充电结束。但是,L*中还有剩余能量,iL并不为0,t2时刻iL(t2)=-I2。这时,在主控制器的控制下,主开关开始导通。因此,是零电压开通。

2.3 [t2,t3]电感放电阶段

如图3(d)所示,可得方程:L*+iLR*=Udc初始条件为:iL(t2)=-I2。

解此微分方程并代入初始条件,可得:

 

 L*中的剩余能量,一部分消耗在R*上,一部分返回电源,iL的绝对值按指数规律衰减,在t3时刻,iL=0,L*中的能量释放完毕,二极管自然阻断。在uc=-Udc即uce=0时,主开关已经开通,在电源Udc的激励下,iL又从0开始正向流动,重复[t0,t1]阶段的过程。

二、IGBT驱动电路分析:(推挽式电路,高电平驱动有效)

 

   

 

 

作用:保护IGBT可靠导通与关断。

IGBT驱动电压至少需要16V,Q1(PNP管)、Q2(NPN管)组成推挽式驱动电路,它们的工作原理是:

1、当输入信号为高电平时,Q2导通,Q1截止,18VDC电压流通,给IGBT的G极提供门极电压,IGBT导通。线盘开始储能。

2、当输入信号为低电平时,Q2截止,Q1导通,IGBT的G极接地,IGBT关断。此时线盘感应电压对谐电容放电,形成了LC振荡。

3、R6电阻在三极管截止时,把IGBT的G极残余电压快速拉低。C11电容作为高频旁路,另外作为平缓驱动电路波形作用,ZD1稳压管,稳定IGBT的G极电压,预防输入电压过高时,损坏IGBT。

在检锅时,如图2.1所示,波形不是很理想,有点变形。当检到锅工作后,如图2.2所示,控制推挽电路的波形与驱动IGBT波形很相似,功率越大,波形的高电平的宽度越大,B点的波形底部平,原因是LM339控制的一路内部三极管导通接地。而A点的波形底部比地略高一点。再回到零电压。

此电路容易出现的问题为上电烧机,为驱动电路输出高电平导致,温升高、瓷片电容有问题。

三、电流取样电路

 

 

作用:判断有无锅具、恒定电流、稳定调节功率提供反馈输入电流

电流互感器T1的次级测得的交流(AC)电压.经D9~D12组成的桥式整流电路整流,EC3电解电容滤波平滑、由电阻R15、RJ41、RJ16分压后,所获得的电流电压送到CPU,该电压越高表示电源输入的电流越大,待机时电流取样基本为零,如图3.1所示, 电流越大,A点的电流电压波形幅值越高,B点的取样点就越高,表示功率越大。电容EC3选值时不应太大,如果太大了,会造成电容充放电时间太长,影响读取电流AD时间,从而会导致开机时,功率上升的时间很慢。

VR1电位器作校准功率用,通过VR1电阻的大小,就可以调节B点的输出电压,电阻越小,功率越大,反之就功率越小,一般调节电位器在中间位置。

CPU根据监测电压AD的变化,作出各种动作指令

1、判断是否放入合适的锅具。(锅具是否小于Φ80(或Φ60)、是否有偏锅,电流过小,再判PWM是否最大,两者满足则判为无锅)

2、限定最大电流,在低电压时保证电流恒定或不超过。保护关键器件工作在规格要求范围内,以及防止输入电源线或线路板走线过电流不够造成烧断。

3、配合电压AD取样电路及电调控PWM的脉宽,令输出功率保持稳定。

此电路易出现的现象:功率压死、功率飘移、无功率输出、断续加热

四、干扰保护电路

 

1、电流保护电路 

 

作用:浪涌保护电路,监控输入电网的异常变化,在有异常时,关断IGBT进行保护

1、正常工作时,LM339的1脚内部三极管截止,电阻R19把1脚电压变为高电平,当电源输入端出现大电流时,1脚内部三极管导通,输出低电平,CPU连接的中断口经过二极管D18被拉低,CPU检测到低电平时发出命令,让IGBT关断,起安全保护作用,此保护属于软件保护,另外还有硬件保护,当1脚内部三极管导通,输出低电平,直接拉低驱动电路的输入电压,从而关断IGBT的G极电压,保护了IGBT不被击穿,通常要判断是软件保护还是硬件保护方法是:通常软件保护时,软件会设置2秒才起动,硬件起动时间很快不超过2秒钟。 

2、C点电压由于选择的参考点是地,静态时,C 点的电压由RJ28、R27、R14电阻分压所得,当正常工作起来后,互感器感应输入端的电流,C点的电压会下降,电流越大,C点电压越低,如图4.1所示,所以A点电压也会下降,B点为LM339负端RJ29、RJ25分压后的基准电压,当A点电压下降到B点以下时,LM339反转,D点输出低电平拉低中断口。通过调节输入正负端的参数来改变干扰的灵敏。

用工具查看两输入端在最大功率工作时,比较电压越接近越好,但仿止出现太过灵敏而导致中断间隙。(变频器上(不一定,但是比较能体现)一般干扰比较大,在最大档功率最大电流时(190~210V之间电流最大)最容易出现,)

3、CPU根据中断口检测电源输入端的浪涌电流,程序检测到有低电平,停止工作,起保护IGBT不受浪涌电流所击穿。

此电路异常出现:检锅不工作、不保护爆机。

2、电压保护电路

 

 

 作用:高压保护电路,监控输入电网的异常变化,在有异常时,关断IGBT进行保护

1、电路的双重保护(电流和电压保护),由R53、R54、RJ55电阻组成分压电路,如果输入电压超过正常设定电压值, A点的电压就会升高,达到或超过三极管Q5的基极导通电压0.7V以上,则Q5一直导通,由于三极管的C极接到LM339的1脚,即中断口,所以程序检测到低电平后会关闭输出,保护IGBT及主回路上面的器件不被烧掉。

2、当有电压浪涌时,R53并联的电容C28起作用,因为电容两端电压不能突变,所以在瞬间电压起变化,电容就相当短路(耦合),A点的电压会瞬间变的很高,使Q5导通而让CPU中断口检测到。正常情况下A点的波形如图4.2所示。

此电路异常出现:检锅不工作、不保护爆机。


 

五、电压AD取样电路

 

 

 

作用:检测电路工作在什么电压段,高低压保护

AC220V由整流管整流成脉动直流电压,通过R4与RJ10、RJ11分压, D7二极管隔离AD检测口与输入端,EC2平滑后的直流电压送到CPU端口进行分解,不受输入端的影响,D8二极管让输入电压最钳位在5.7V,保护CPU端口不会被高电压击穿。正常电压下,输入电压比较稳定,如图5.1所示。

CPU检测输入电压信号后发出动作命令

1、判别输入的电压是否在充许的范围之内,否则停止加热,并发出报警信号。

2、判别输入电压是否高电压,根据输出功率是否为低功率(1300W以下),进行升功率,目的是为了减小IBGT在高压小功率时,出现硬导通,即IBGT提前导通,来减小IGBT的温升,根据高功率(1800W以上),配合炉面传感器是否检测到线盘温升高,如果温升高,可适当的降功率,从而保证线盘不会因为温升高而烧毁。

3、与电流检测电路形成实际工作功率,CPU智能的计算出功率的大小再与CPU内部设定的功率值作比较,去控制PMW脉宽调制的大小,稳定输出所需各档的大小功率。

4、通过电流AD配合,保持高压是恒定功率输出。

此电路异常出现:高低压无保护,间隙加热,功率上不去。

六、同步电路和自激电路

 

 

 

 作用:跟踪谐振波形,提供合理的IGBT导通起点,提供脉冲检锅信号

原理:采用电阻分压及电容延时的方式跟踪谐振电路两端电压变化;自激振荡回路、启动工作OPEN口、检测合适锅具PAN口。

RJ1、RJ2和RJ3、RJ5、RJ52分别接到谐振电容与线盘两端,静态时A(-端)比B(+端)电压要低(通常两端电压压差在0.2-0.4V比较理想),C点输出高电平。C16电容两端都是高电平,所以不起作用,D点由于接了RJ17上接电阻,也被拉高,在静态OPEN端口通常被MCU置为低电平,由于E点与OPEN端口接了二极管D15,当OPEN端口被置低时, E点电压钳位在0.7V,此时D(-端)电压比E(+端)电压要高,导致I点(2脚)输出低电平,控制IGBT关闭,不能加热。 

  C18、C20电容是调节谐振电路的同步,减少燥音及温升过高的节用。C21是反馈电容,当14脚输出低电压时,反馈到9脚,使9脚电压拉低。加速14脚更快达到低电平。

如图6.1,在无锅开机启动时,图上为各个关键的检测波形。

1、先在G点发出一个十几US的高电平(检锅脉冲),通常是每1秒钟发一次,E点由于二极管D15的反偏截止,由PWM端口输出的脉宽由电容平波后送到E点,E点电压也有十几US的变高宽度,由于OPEN口的瞬间高电平输出,电容C22耦合,A点(-端)相当瞬间加到5V,A点电压比B点(+端)高,C点输出低电平。C16电容也起耦合作用,把D点电压拉低,所以E点电压比D点电压高,I点输出一个高电平,IGBT导通,LC组合开始产生振荡。 

2、启动后,在C点产生一连串的脉冲波形,当放上锅具时,LC组合产生的振荡好似串上负载,很快就消耗完,在C点的产生脉冲个数也减小,CPU通过检测端口检测C点的脉冲个数来判断是否有锅或放入合适的锅具。因无锅或锅具不造合时谐振后波形衰减的很慢,检出来的脉冲个数会很多。另外,如果一直检测到高电平,说明线盘没接好或同步电路出问题。

3、当检测到有合适的锅具,因谐振后波形衰减的很快,检出的脉冲个数会很少。CUP让G点(open)一直输出高电平进行工作,E点的电压随PWM输出脉宽的大小所控制,最终控制功率输出的大小。各个工作波形如图6.2所示。

CPU通过PAN,OPEN检测控制脚输出控制信号。

1、OPEN口在工作过程中一直为高电平,有干扰中断信号时输出低电平,2S后回复高电平继续工作。关机时为低电平。在检锅时发出一个十几US的高电平后关断。

2、PAN口作用,在开机时检测是否有合适的锅具,通过检测脉冲个数来判定是否加热。此端口在这里一直作为输入口(也可用来启动工作及检测脉冲个数,双重作用。)

此电路异常现象:不检锅、IGBT温升过高、燥音大。

七、反压保护与PWM控制电路 

 

 

作用:决定IGBT的导通宽度,提供IGBT正常开通、关断。

RJ32、RJ21提供基准电压给LM339的11脚,10脚由同步谐振电路分压得出,抑制IGBT的C极反压不得超过1150V, 当提锅或移锅时,IGBT反压增大,当接近1150V时,同步端使LM339的10脚电压高过11脚,13脚输出低电平,然后比较器一直在切换,从而维持电压不超过限压,保护IGBT不损坏。如图7.1所示。

RJ34、RJ35、EC8、C8,R31组成PWM控制电路,当PWM输出的脉冲宽度越宽,经过EC8平波后输出给LM339的5脚电压也越高,与LM339的4脚比较反转的时间也越长,2脚输出高电平时间也越长,进而控制IGBT驱动脉宽,达到控制加热功率越大。反之越小,PWM脉宽输出波形如图7.1的D点所示。

正常电压上,当PWN调节最小时,当最小功率(800W)下不来时,原因是D点的电压点太高了,导致IGBT的开通占空比无法调小,此时可以调小R31电阻来实现。

CPU通过检测输出控制信号

1、反压电路B点给LM339正端设置一个基准电压,当(A点)负端接收到谐振波形时,与B点作比较,当比较谐振脉冲高于基准电压时,比较器反转,抑制谐振电压不超过1150V,(这里用的IGBT耐压是1200V)。

2、抑制反压后,如果锅具有抬锅、偏锅时,输出功率会有变化,根据电流取样电路的电压值,调整PWM脉宽。

3、CPU通过控制PWM脉宽宽度,控制比较器的输出来控制IGBT的导通时间的长短,结果控制了输出功率的大小。

此电路异常易出现:爆机、检锅慢、检不到锅

八、炉面传感器与IGBT热敏电阻取样电路

 

 作用:侦测炉子上锅具内部的温度、检测散热片发热情况

炉面传感器:炉面加热锅具的温度透过微晶玻璃板传至紧贴在微晶玻璃板底部的传感器,该传感器的阻值变化直接反映了锅具温度的变化,传感器与RJ36电阻分压电压的变化反映了传感器的阻值变化,就反映出加热锅具的温度变化。

IGBT热敏电阻:该热敏电阻放在紧贴着IGBT的正面。用导热硅脂涂在它们之间,并压在PCB板上,IGBT产生的温度直接传到了热敏电阻上,热敏电阻与RJ37电阻分压点的变化反映了热敏电阻的阻值变化。直接反映出IGBT的温度变化。

CPU通过检测两路AD值的变化作出指令控制。

炉面传感器:

1、定温控制,控制加热温度点,恒定加热物体温度恒定在设定的温度范围内。

2、自动功能及火锅控制,利用探测温度及结合时间,控制锅具内部的温度,达到最佳的烹煮效果。

3、自动功能工作时,锅具温度是否高过设定温度,立即停止工作,并关机。

4、锅具干烧时,立即停止工作,并关机。

5、传感器开路或短路时,开机后发出不工作信号(开路需要1分钟后再判断),并报知故障信息。

IGBT传感器:

1、当探测到IGBT结温>85℃时,根据当前工作情况,升功率或降功率,或间隙加热方式,让IGBT结温≤85℃。如果在不正常情况下温升还继续升高,高于110℃,则立即停止加热,并报知信息或不报知信息,而是每4S检测一下锅具。待温升下降到60℃又再次加热,循环工作。

2、热敏电阻开路或短路时,开机后发出不工作信号,(开路需要1分钟后再判断),并报知故障信息。

3、在关机状态下,如果IGBT温升高于55℃,CPU则控制风扇一直工作,直到温度小于45℃后停止工作。第一次上电时不作判断处理。

此电路异常易出现:炉面传感器失效,导致线盘过热烧线盘及爆机、无法达到正常的设定温度标准。IGBT热敏电阻失效,无法正常判断IGBT温升,导致烧IGBT。

九、风扇控制电路

 

 作用:排出炉内热气

将IGBT及整流桥紧贴在散热片上,利用风扇运转,通过电磁炉外壳上的进、出风口形成的气流将散热片上的热及线盘等零件工作时所产生的热,加热锅具辐射进电磁炉内的热、及其它器件所散出的热排出炉外。降低炉内的环境温度,以稳定电磁炉正常工作。

CPU控制FAN端口输出高电平,使Q3三极管导通,18V电压加在风扇两端经过Q3到地,使风扇运转,当FAN输出低电平时,Q3截止,风扇停止工作,D22是开关二极管,作用是吸收,平波,起到保护三极管不被击穿,同时也让风扇工作的更可靠。

CPU根据程序判断发出控制命令

1、结合炉面传感器与IGBT传感器取到的AD值,控制风扇工作。

2、判断是否开机,风扇长转。

3、判断是否有特殊要求控制风扇工作。

此电路异常易出现:风扇长转,不转

 十、开关电源电路

 

 

 作用:为电路工作提供可靠的DC18V及DC5V电压。

AC220V 50/60Hz电源电压通过全波整流后,脉动的直流电压经EC7平波,经变压器初级加到低频放大管(NPN)13003的C极及经过R3电阻加到三极管的B极。使变压器初级产生电流进而产生电压,当Q8导通后,经过ACT30B的2脚(DRV)给1脚电容EC41充电,当电容充到5V后,2脚与3脚接通,EC41放电,下降到4.6V后,2脚与3脚断开,周而复始的工作,最后在三极管的A点产生如图10.1的波形,ZD3、ZD4、D39组成反馈电路,控制输出电压稳定在18V与5V,

R60,C5、D20构成RCD缓冲保护电路,用于抑制三极管关断后变压器产生过电压,减小关断损坏三极管。组成吸收电路,当变压器在受到浪涌后。因本身具有感应电动势及自身的漏感误差,使得与Q8相接的点电压会升高,通过吸收回路,把高出部分电压又送回到电源上。

D21、D23是快速回恢二极管,经过前级的电路工作,变压器次级输出两路电压,一路+18V电压提供给LM339,及风扇等电路工作,另一路电压通过78L05的输入端,输出端输出稳定的5V电压供IC工作(显示板)。

此电路异常易出现:过流保护、死机、爆机、上电无反应

电磁炉显示板原理图整体框图

 

显示板分成3大部分:

11、显示控制部分

12、蜂鸣器驱动电路

13、微电脑主控芯片IC

Tags:电磁炉,故障维修,电磁炉电路原理  
责任编辑:admin
请文明参与讨论,禁止漫骂攻击,不要恶意评论、违禁词语。 昵称:
1分 2分 3分 4分 5分

还可以输入 200 个字
[ 查看全部 ] 网友评论
最新推荐
关于我们 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 在线帮助 - 文章列表
返回顶部
刷新页面
下到页底
晶体管查询