电子开发网

电子开发网电子设计 | 电子开发网Rss 2.0 会员中心 会员注册
搜索: 您现在的位置: 电子开发网 >> 基础入门 >> 电路原理 >> 正文

赛贝克效应及其逆效应(热电偶原理)

作者:佚名    文章来源:本站原创    点击数:    更新时间:2018/8/29

塞贝克效应(SEEBECK EFFECT)

1821年,德国入赛贝克发现了当两种不同的导体相连接时,如两个连接点保持不同的温度,则在导体中产一个温差电动势:

V=a△T

式中:V为温差电动势

a为温差电动势率(赛贝克系数)

△T为接点之间的温差

1821年,赛贝克发现,把两种不同的金属导体接成闭合电路时,如果把它的两个接点分别置于温度不同的两个环境中,则电路中就会有电流产生。这一现象称为塞贝克(Seebeck)效应,这样的电路叫做温差电偶,这种情况下产生电流的电动势叫做温差电动势。例如,铁与铜的冷接头为1℃,热接头处为100℃,则有5.2毫伏的温差电动势产生。

塞贝克效应用途很广泛,在生产、科学研究及日常生活中温差电偶常被用来测量温度(如冶炼及热处理炉的高温)、辐射强度、电流等物理量。

如果把若干个温差电偶串联起来,把奇数点接头暴露于热源,偶数接点固定在一个特定温度环境中。这样产生的电动势等于各个电偶之和。这种装置叫做温差电堆。把奇数接头涂黑,借以完全吸收外来的辐射(可见光、红外线等),温差堆的另一端(偶数接头处)保持一定温度,在辐射的作用下,涂黑的一端接收了辐射而温度升高,从而产生温差电动势。

建立起温差电动势与辐射强度的对应关系,那么就可以利用温度差电堆来测量辐射强度。如果把这种装置放在真空中,会提高它的灵敏度。

如果把很多温差电偶适当联接起来,就能构成一个能产生几伏特电动势和几安培电流的电池组。但是这种电池组的效率是很低的,温差电池组是消耗热能而产生电流的,其最高效率仅为0.1%,所以不能用来做电源。现代用半导体教材制成的温差电偶的串联起来,可以组成能供应较大电流和电压的半导体温差发电机,足够满足收音机和小型电子设备的需要,有很大实用价值。

1834年帕耳贴(Peltier)发现了塞贝克效应的逆效应,当电流通过由两种不同金属相接而成的导体时,在两种金属导体上除了产生与电流方向完全无关的焦耳热以外,还在接触点发生与电流方向有关的热量的放出或吸收。这种由于电流通过不同导体的接触点而发生放热或吸热的现象称为帕尔贴效应。用半导体制成的帕尔贴效应装置具有广阔的应用前景。把温差电堆的冷接点放在冰箱内,热接点放在箱外,并通过一定电流,则内部冷接点吸收热量再由外部热点放出。这样做成的致冷器可以获得105℃的温度差,而且具有耗电省,寿命长、易控制、无污染等优点。如果使电流反向,结果则相反,外部接点变冷,内部接点变热。

珀尔帖效应(PELTIER EFFECT)

一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。

Qл=л.I л=aTc式中:Qπ 为放热或吸热功率

π为比例系数,称为珀尔帖系数

I为工作电流

a为温差电动势率

Tc为冷接点温度

汤姆逊效应 (THOMSON EFFECT)

当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T的导体两点之间,其放热量或吸热量为:

Qτ=τ.I.△T

Qτ为放热或吸热功率

τ为汤姆逊系数

I为工作电流

△T为温度梯度

以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。

约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体致冷器件。

中国在半导体致冷技术开始于50年代末60年代初,当时在国际上也是比较早的研究单位之一,60年代中期,半导体材料的性能达到了国际水平,60年代末至80年代初是我国半导体致冷器技术发展的一个台阶。在此期间,一方面半导体致冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体致冷器,因而才有了现在的半导体致冷器的生产及其两次产品的开发和应用。

Tags:热电偶原理,热电偶,电偶,塞贝克效应  
责任编辑:admin
请文明参与讨论,禁止漫骂攻击,不要恶意评论、违禁词语。 昵称:
1分 2分 3分 4分 5分

还可以输入 200 个字
[ 查看全部 ] 网友评论
最新推荐
关于我们 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 在线帮助 - 文章列表
返回顶部
刷新页面
下到页底
晶体管查询